Goldbach Conjecture. Christian Goldbach (1690-1764) conjectured that: all number greater than 2 and even is equal to the sum of two primes.

Here are some examples:
4 = 2 + 2
6 = 3 + 3
8 = 3 + 5

Also known as the strong Goldbach conjecture has been proven using computers to the even numbers up to one hundred million, but has not yet been demonstrated.

In contrast, the Goldbach’s weak conjecture which states that any number greater than 5 and odd is equal to the sum of three primes was recently demonstrated by the Peruvian mathematician Harald Helfgott.

Fermat Conjecture. Pierre de Fermat (1601-1665) conjectured in 1637 that there are no integers verifying the following equation for n greater than or equal to 2

Fermat conjeture

Fermat’s conjecture remained unproven three centuries and a half. In June 1993, the English mathematician Andrew Wiles announced that he had proved Fermat’s conjecture. But his show had some gaps, it took over a year to resolve. Finally, Fermat’s conjecture has been established, becoming the Fermat’s last theorem.

Fermat’s little theorem: 2 ways to express:

    • For any a number a and p prime  Fermat's little theorem.

the other way is:

    • If p is prime, and a coprime to p then Fermat's little theorem 2.

Example:

Fermat's little theorem example

Fermat’s theorem on sums of two squares Every prime number p can be written asFermat's theorem on sums of two squares, where x and y are integers if p = 2 or p=1 (mod 4).

Fermat's theorem on sums of two squares example

{5,13,41} are of 4k + 1 form, or in other words are congruent to 1 mod 4.

Euler’s Theorem (1736) If a and n are coprimes:

Euler's Theorem is multiple of n.

in the language of the elements Zn is:

Euler's Theorem 2

where Euler's totient is the Euler’s totient, which counts the coprime numbers with n up to n.

Mills’ Constant (1947)

The Mill's constant constant generates Mills' primes  prime numbers for any n natural.

If the Riemann hypothesis is true the value of the constant is  Mill's constant = 1,30637788386308069046….

since there is no known way to calculate this constant and it is unknown if the rational number.

Share this!
Share on Facebook0Share on Tumblr0Tweet about this on TwitterShare on Reddit0Share on StumbleUpon0Share on Google+0Email this to someone